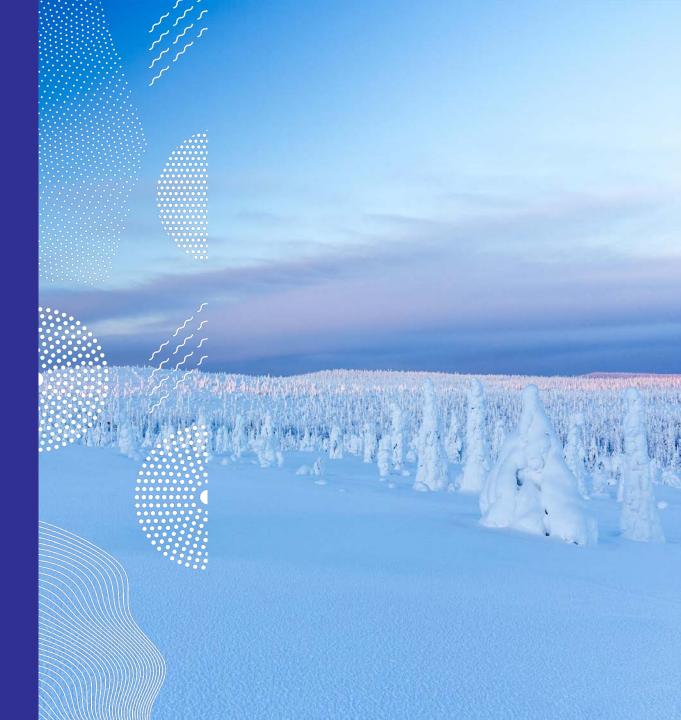


ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE



CBC Green InterTraffic – project meeting

29.-30.1.2019, Helsinki

Welcome to FMI

18.2.2019 Emmi Laukkanen

Agenda – Tuesday 29th Jan

- 10:00 Welcome to FMI - Emmi Laukkanen / FMI & Ludmila Karelina /SPCCI
- 10:30 Coffee break
- 11:00 Project Objectives: clarification for the first project phase
 - Objectives of the Project; Tasks for the first project phase and the proposed distribution of the work for the first project phase among the project partners - Svetlana Vorontsova / Transport Intergration Ltd.
 - Discussion •
- 12:00 Lunch
- 13:00 Methodology for calculating emissions of greenhouse gases and other air emissions from vehicles using different types of fuel and energy
 - In Finland Finland / Marko Torkkeli, LUT
 - In Russia / Vladislav Pavlov / Transport Intergration Ltd
- 14:30 Coffee break
- 15:00 Air Quality modelling - CAR-FMI model and resuspension of particles / Emmi Laukkanen, Mari Kauhaniemi, Timo Rasila / FMI
- 16:00 A visit to the FMI laboratories
- 17:00 Discussions at Dinner at FMI (5th floor)

CBC 2014-2020

Agenda – Wednesday 30th Jan

9:00 Road weather

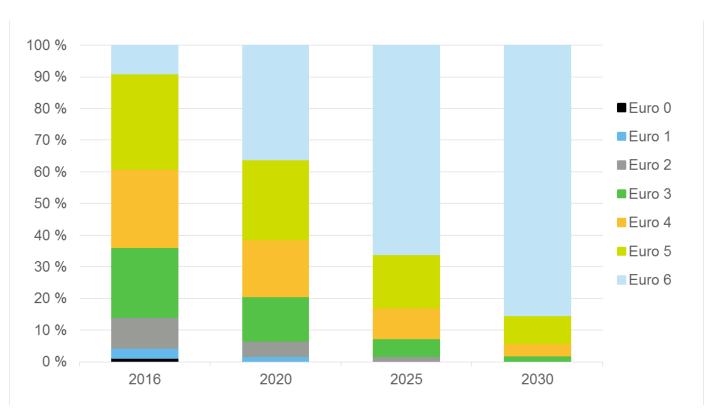
- Road weather model Virve Karsisto / FMI
- Road weather as a service Ida-Reetta Virranjoki / FMI
- Road Weather in Russia
- Road Weather observations and modelling in Russia Institute of Radar Meteorology
- 10:00 Coffee break
- 10:30 Air Quality monitoring
 - Air quality measurements with LIDAR / SP University
 - Air quality sensors / Antti Wemberg / FMI
- 12:00 *Lunch*
- 12:30 Discussions
- 13:30 End of Day 2

3

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

Methodology for road traffic emission calculations in Finland

Emission factors from EEA meet Finnish road traffic distribution (VTT, LIPASTO)


Car fleet composition in Finland

LIPASTO

- a calculation system for traffic exhaust emissions and energy use in Finland.
- The system is developed and published for public by VTT Technical Research Centre of Finland Ltd

ALIISA (submodel for LIPASTO)

- Car fleet composition model includes all vehicles (road traffic;
 - Vehicle type (Passanger cars, Bus, heavy duty trucks,...)
 - Technology (Bensin, Diesel, Electric, gas..)
 - EURO-Class
- How much each type of vehicle type (in each EURO-class, technology, vehicle type) performs (n shares %)

Also a forecast how the car fleet will develope in future..

http://lipasto.vtt.fi/index.htm

CBC 2014-2020 SOUTH-EAST FINLAND - RUSSIA

EEA Report No 21/2016

guidebook 2016

ISSN 1977-844

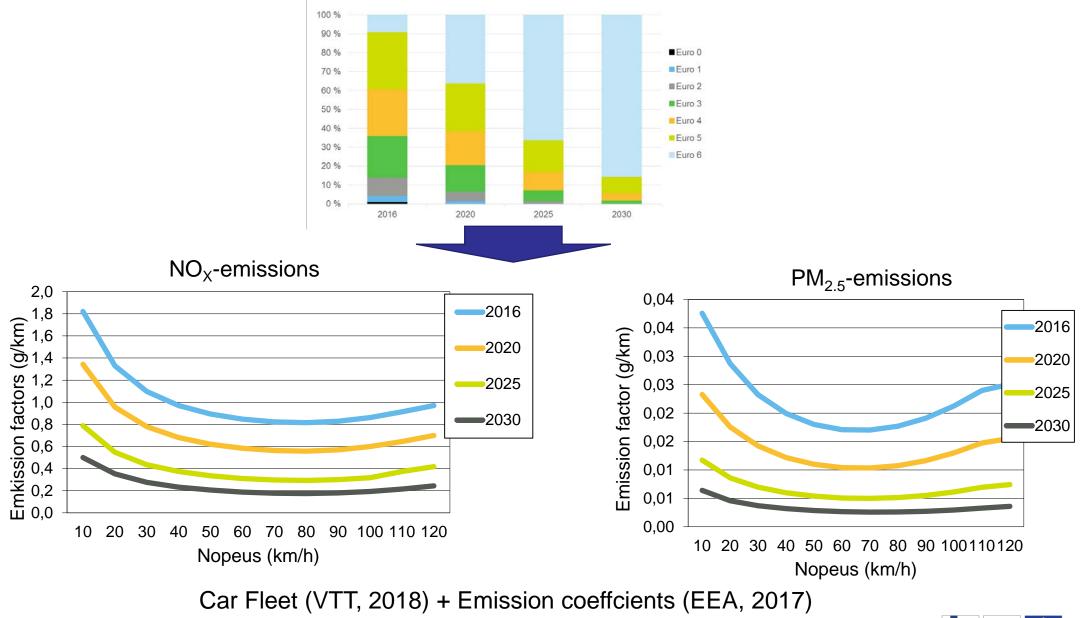
Emission factors

"TIER 3 method" (in *EEA, 2017.* Exhaust emissions from road transport. In EMEP/EEA air pollutant emission inventory guide book 2016, last update June 2017. EEA Report No 21/2016. European Environment Agency, Denmark. ISBN 978-92-9213-806-6)

Emission factors

- for each type of vehicle
- for each EURO-class,
- dependent on driving velocity.

Long-Film	RTAP	European Environment Agency	
Category		Title	
NFR	1.A.3.b.i 1.A.3.b.ii 1.A.3.b.iii	Passenger cars Light commercial trucks Heavy-duty vehicles including buses Motorcycles	Îrtai
	1.A.3.b.iv		
SNAP	1.A.3.b.iv 0701 0702 0703 0704 0705	Passenger cars Light commercial vehicles < 3.5 t Heavy-duty vehicles > 3.5 t and buses Mopeds and motorcycles < 50 cm ³ Motorcycles > 50 cm ³	
SNAP	0701 0702 0703 0704	Passenger cars Light commercial vehicles < 3.5 t Heavy-duty vehicles > 3.5 t and buses Mopeds and motorcycles < 50 cm ³	
	0701 0702 0703 0704	Passenger cars Light commercial vehicles < 3.5 t Heavy-duty vehicles > 3.5 t and buses Mopeds and motorcycles < 50 cm ³	



EMEP/EEA air pollutant emission inventory

Technical guidance to prepare national emission inventories

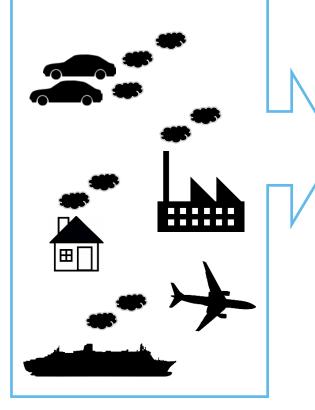
CBC 2014-2020 SOUTH-EAST FINLAND - RUSSIA

= Emission factors that depend on velocity and on car fleet

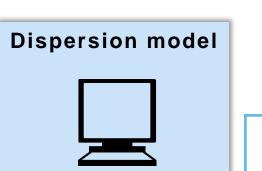
CBC 2014-2020 SOUTH-EAST FINLAND - RUSSIA

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

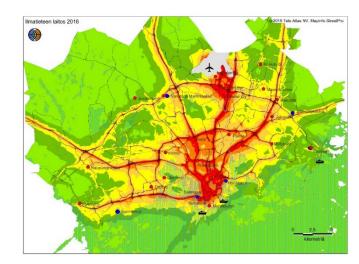
CBC 2014-2020 OUTH-EAST FINLAND - RUSSIA

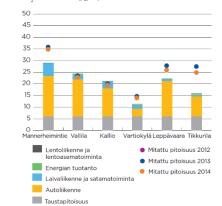

Dispersion model CAR-FMI

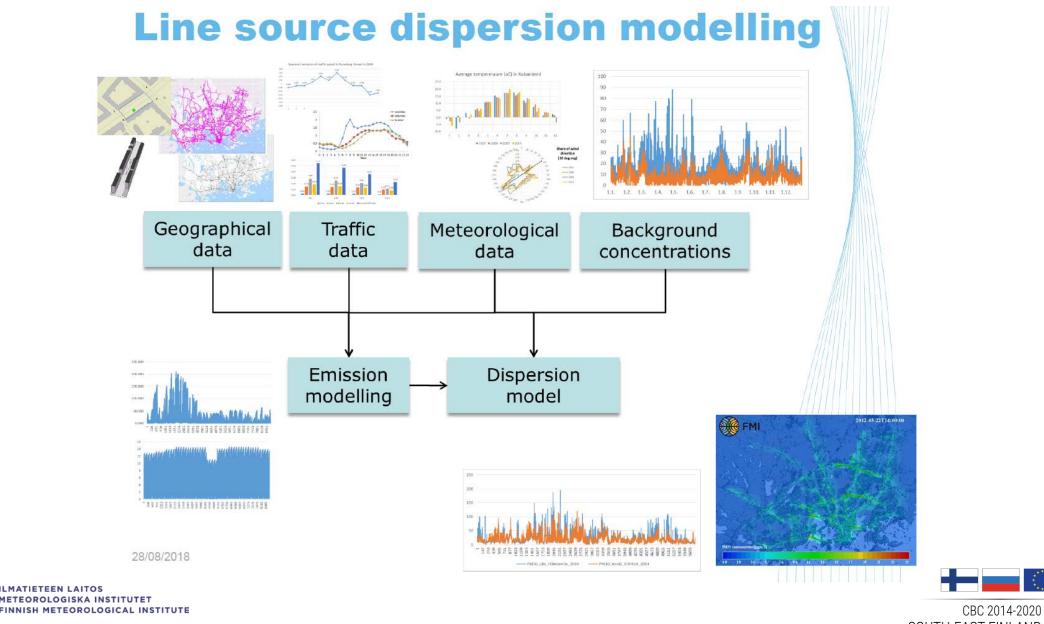
18.2.2019 Nimi


Emission dispersion modelling

Emissions

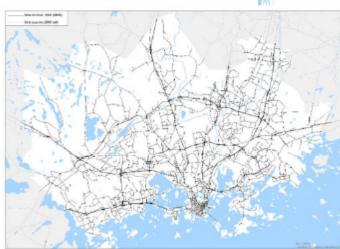

NO_x, SO₂, PM₁₀, PM_{2,5}, PAH, VOC, metallit...

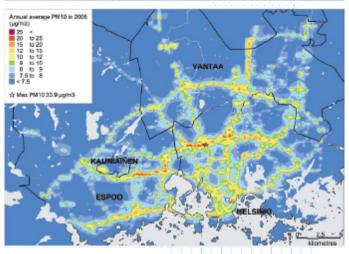




The model inculudes for example the chemical transformation, deposition, effects of the terrain, ... Model results: Distribution of the Concentrations in map

NO₂ vuosikeskiarvo (μg/m³)

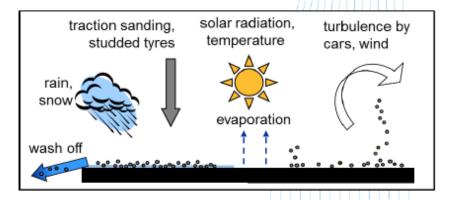



10

SOUTH-EAST FINLAND - RUSSIA

Open road network dispersion model (CAR-FMI)

- Contaminants in the Air from a Road (e.g., Härkönen, 2002)
- Traffic-originated pollution from an open road network, road is treated as a straight line of finite length
- Gaussian plume dispersion
 - with NO_x-O₃-NO₂ chemistry or
 - as inert tracer (or with dry deposition)
- Influence of terrain: average surface roughness, i.e. individual obstacles not included.
- Input
 - Receptor point and line source coordinates
 - Meteorological data
 - Background concentrations
 - Road traffic emissions
- Time resolution: hourly time series
- Spatial resolution not fixed:
 - User can define the set of receptor points
 ^{28/0}Generally from 20 to 500 meters

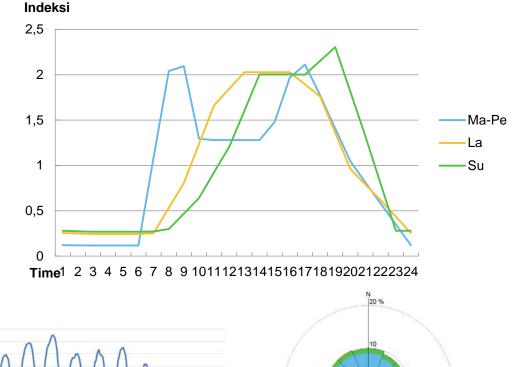

CBC 2014-2020

SOUTH-EAST FINLAND - RUSSIA

Road dust emission model (FORE)

- Forecasting Of Road dust Emissions (Kauhaniemi et al., 2011)
- Based on PM emission model of SMHI (Omstedt et al., 2005)
- Considers
 - Moisture content of the road surface.
 - Particles from the wear of pavement due to studded tyres and traction sand.
- Not considered
 - Emissions from the wear of vehicle components.
 - Dependencies of emissions on vehicle speed or fleet composition.
 - Influence of salting, dust binding, and cleaning.
- Input
 - Hourly meteorological time series
 - Share of studded tyres
 - Measured or modelled sanding dates
 - Reference emission factors

The main sources and formation processes of PM.



Input data needed to model the emissions from the road traffic:

90.00

- Information on the traffic:
 - Traffic volume
 - Travel speed
 - Car fleet composition
 - Percentage of busses, vans, trucks, passanger cars, etc..
 - If you know the EURO classes of each vehicle type and how much you drive with each EUROclass, the information can be applied – how ever EEA has also TIER 1 and TIER 2 methods, that can be applied with less information.
 - Time variation of the traffic
- Background Hourly concentrations of ozone (O₃), nitrogen oxides (NO_x), small particles (PM_{2.5})
- Meteorological data of years 2016-2018?

2 - 4 4 - 6 ≥ 6 m/

Questions & Notes

- Which year do we choose for the scenarios?
 - <u>https://www.lvm.fi/-/liikenteen-paastot-nollaan-vuoteen-2045-mennessa-990321</u>
- One very interesting point will be to compare the different types of calculation methods (Russia/Finland) and learn from them. -> comparison to measurements is important
- Which components we would like to investigate in this project? (Nox, PM2.5, (PM10?))

